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Bulk and interior packing densities of random
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The packing densities of random close packing of equal hard spheres (RCPHS) are studied.
The RCPHS is generated by a rearrangement algorithm with an optimization subroutine.
Traditionally defined packing density, bulk density, is found to be 0.635 ± 0.002 by
extrapolation to infinite number of spheres. We propose that there exist a characteristic
packing density without boundary effects. This interior packing density is calculated by two
methods, resulting in values without statically significant difference. Interior packing
density deduced from Voronoi diagram is 0.6690 ± 0.0006. Local packing density for each
sphere is defined as ratio of its volume to volume of its corresponding Voronoi cell and is
sensitive to sphere’s local configuration and overlapping.
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1. Introduction
Random close packing of hard spheres (RCPHS) is a
useful model for various physical systems such as liq-
uids, glasses, powders and colloidal suspensions [1–3].
There are extensive studies on RCPHS, which can be
classified into two catalogues. Numerous experiments
were carried out, in which physical spheres of steel
or nylon, etc., were poured into containers of different
shapes and volumes [4–7]. Packing densities, which are
the ratios of the total volume of spheres to the volume of
containers, are measured and coordination number of
spheres was also recorded in some experiments. When
equal spheres were poured into rigid containers, there
appeared to be a range of random packing density pos-
sible, with the upper limit at 0.637 and the lower limit
at 0.601 [5]. Reported packing density of RCPHS of
equal radius with the highest precision was 0.6366 ±
0.0005 [7]. There are questions accompanying with the
interpretation of results of such experiments [7]. It was
observed that there was tendency of the formation of
some almost regular packing at the walls of the con-
tainer, especially when they were even planes. Addi-
tional void space also appeared at the walls. The two
kinds of boundary effects just mentioned influence the
value of packing density in opposite directions, and,
therefore, a rather crude experiment could yield out
result that was fairly close to those from more elabo-
rate measurements. It seems that traditionally defined
packing density alone, even if it was obtained through
extrapolation of measured data to infinite container vol-
ume, cannot reveal the packing density of RCPHS with-
out ambiguity. The other catalogue of RCPHS stud-
ies relies on computer simulation. Packing of spheres
with definite radius distribution is generated by com-
puter algorithms [8–12]. Because location and radius

of spheres are recorded completely, it is relatively easy
to perform detailed structure analysis. Radial distribu-
tion functions (RDFs) and Voronoi polyhedra analysis
were frequently reported to reveal the connectivity of
spheres [11, 12]. The same difficulty in utilization of
packing density as an indicator of the packing nature
also exists due to the boundary effects. In fact, packing
density as high as 0.665 was reported for RCPHS of
equal spheres [13].

Computer algorithms used to generate RCPHS can
be further classified into two catalogues [14]. The first is
the sequential generation method [8, 9]. By this method,
only one particle is generated each time and added to
the surface of cluster of spheres existing already based
on some criteria. The second is the collective rearrange-
ment algorithms [10–14], where many spheres are ini-
tially placed randomly within a defined space, with
overlaps between neighboring spheres. An algorithm
was then applied to relocate each sphere to new posi-
tion to reduce the overlaps between spheres. When such
an algorithm could not further decrease the overlapping
volume, all spheres were shrunk by a factor. By repeat-
ing the relocation and shrinking steps, an overlapping
free packing was finally obtained. The most important
feature of relocation algorithm was how new position
of the sphere in consideration was decided. Usually, if a
sphere had overlaps with n surrounding spheres, its new
position after the specific relocation operation is deter-
mined by a linear combination of its initial coordinates
and that of n neighbors. Since the overlap volume had
a dimension of three (length3) while that of coordinate
a dimension of one (length), some proposed relocation
operations would in fact increase the overlap volume
and therefore could not be performed, while it was rare
for other operations to result in minimum overlapping
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volume possible, even though they do decrease it. Enor-
mous iterations were needed to get overlapping free
packing. It was found that some spheres might be locked
into place and decrease of radii would not change the
local structure. To prevent occurrence of this situation,
each sphere should take a small random displacement,
imitating vibration process in packing experiments. It
was highly experiential to decide when and how to vi-
brate spheres. Long range ordering of spheres could
also appear in vicinity to boundary without appropriate
random displacement [15].

In this paper, we modified the traditional rearrange-
ment algorithm by a straightforward approach to the
reduce of overlapping volume. An optimization subrou-
tine is employed to find the minimum overlapping posi-
tion for each sphere to be relocated. Vibration process is
eliminated. Ordering near boundary is avoided through
allocation of boundary condition for each sphere in
optimization subroutine. Packing of spheres of equal
radii obtained will be analyzed and compared with re-
sults in literature. We concentrate our discussion on the
definition and calculation of various kinds of packing
densities and the concepts of bulk and interior packing
densities is proposed which provide insight of nature
of RCPHS.

We first give a description of our algorithm of RCPHS
simulation, and then a detailed presentation of the anal-
ysis of RCPHS of equal radius. A summary is listed at
the end of this paper.

2. Algorithm to generate RCPHS
Given below is an outline of the computer algorithm
used in this work to generate RCPHS (Fig. 1), some
key parameters involved are also presented.

Figure 1 Algorithm to generate RCPHS. Variables are defined in text.
Numbers in parentheses correspond to steps described in Section 2 with
same notation.

(1) M points of uniform distribution are placed in a
cubic domain of size 2L ∗ 2L ∗ 2L. These points sever
as initial center of M spheres. Simulation results show
that stable statistical properties can be obtained with
M ≥ 5, 000 [16]. In this paper we present results from
RCPHS of 10,000 spheres. Initially, radius of each
sphere is unity, leading to an overlapping volume, V ,
of the order of 104.

At the beginning of this work, we found that or-
dered cluster seeded easily at the domain boundary
during relocation process and grew into interior. To
avoid the occurrence of long range ordering, we as-
signed another constraint to space available for spheres.
Each sphere should move within a quasi-cube of size
2L +�L , where �L are different for different spheres
and uniformly distributed in the range from −r/2 to
+r/2. Of course, this constraint is effective only to
spheres near initial cubic domain of size 2L ∗ 2L ∗ 2L.
In other word, the initial even planar boundary is trans-
formed into rough boundary through utilization of this
constraint and ordering near the boundary is avoided.

(2) The spheres were relocated one by one in a ran-
dom sequence to reduce V . When a specific sphere of
radius r is in consideration, no other spheres are allowed
to move. An optimization subroutine finds a new po-
sition for this sphere within the spheric space with a
radius of 2r centered at its original center and, at the
same time, within the quasi-cube, to minimize its over-
lapping volume with surrounding spheres. After each
sphere is relocated, V reaches a new lower value.

(3) Overlapping volume of a sphere with its neigh-
bor is a non-linear function of its coordinates. In con-
struction of RCPHS, this overlapping volume is to be
minimized under constraint conditions. An efficient al-
gorithm for this kind of problem is to solve correspond-
ing Kuhn-Tucker equation through sequential quadratic
method [17] and is employed in our program.

(4) This relocation step is iterated (each iteration
having different random sequence of spheres), until
no signification reduction of V can be achieved. The
ratio of overlapping volumes of two successive itera-
tion, p = Vn/Vn+1, is assumed to be the criterion to
determine whether the overlapping volume is reduced
significantly and the critical value of p (pc) is 1.0005
in this work. When p is less than the critical value, the
relocation step is executed again.

(5) All radii of spheres are shrunk by a factor of
m, if relocation of spheres cannot reduce overlapping
volume significantly. In this case, times of shrunk of
spheres, Np, is counted. In this work, m is 1.0003.

(6) Relocation process is terminated when overlap-
ping volume satisfies a standard s, overlapping ratios,
which is defined as (overlapping volume/(2L)3). Radii
of spheres were renormalized to its original value of
unity and their centers linearly transformed using Np
and m.

We also performed a series of simulations to record
configurations of 10,000 spheres to find out which s
value reproduces RCPHS characteristics reported in
literatures. Finally, a RCPHS of M spheres is ob-
tained. For M = 10,000, all spheres positioned in
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Figure 2 A typical cross section of RCPHS. The centers of the shaded
spheres are above the cross section plane while the others are under the
cross section plane.

an approximately cubic domain of size about (2L)3 =
40 ∗ 40 ∗ 40 (the original value of 2L is 30) and over-
lapping volume is less than s ∗ (2L)3. A typical cross
section of RCPHS is showed in Fig. 2.

Simulation of RCPHS is carried out in a personal
computer with CPU of 1 GHz. It takes approximately
80 hrs CPU time to generate a RCPHS of 10,000
spheres.

3. Results and discussion
Five sets of RCPHS with 10,000 spheres each are sim-
ulated. To eliminate possible boundary effects near do-
main boundary due to our algorithm, spheres centered
within outermost shell of two times sphere diameters
(four length unit) thick are not included in analysis
below.

3.1. Radial distribution function
Radial distribution functions (RDF) corresponding to
overlapping ratios s from 1 ∗ 10−5 to 2 ∗ 10−3 is calcu-
lated (Fig. 3). At the overlapping ratio from 7.5 ∗ 10−5

to 6.0 ∗ 10−4, the RDFs exhibit a first peak at one di-
ameter and a split second peak with the first subpeak
lower than the second one. The first subpeak locates at
1.744 diameter (expected value is

√
3), while the sec-

ond one at 1.993 diameter for s = 7.5 ∗ 10−5. The first
subpeak locates at 1.721 diameter while the second one
at 1.970 diameter for s = 6.0 ∗ 10−4. A lower subpeak
position indicates overlapping of spheres and a higher
position departure of spheres. However, when the over-
lapping ratio is greater than 5 ∗ 10−4, the first subpeak
of the split second peak is higher than the second one,
contradictious to RCPHS feature reported in literature
[11, 12] and the first subpeaks move gradually to lower
position (e.g., at 1.653 diameter when s = 6.4 ∗ 10−3).
At s value equal to or less than 1.0 ∗ 10−4, the first sub-
peak locates higher than 1.74. Judged by RDF, RCPHS

Figure 3 Radial distribution function of RCPHS with different
overlapping ratio (a) s = 6.0 ∗ 10−4, (b) s = 5.0 ∗ 10−4, and (c)
s = 1.0 ∗ 10−4.

feature can be obtained with s ranging from 2.0 ∗ 10−4

to 5 ∗ 10−4 and our simulation leads to a local structure
of random close packing similar to those generated by
algorithms without optimization subroutine.

3.2. Bulk packing density
Suppose that a virtual hard spherical container is placed
in the RCPHS structure and only those spheres that to-
tally within the container will contribute to the calcula-
tion of the sum of the volume of spheres (Fig. 4a). This
is the situation encountered in packing experiments.
When the radius of the container is changed gradu-
ally, packing density ρ1, defined as ratios of volume
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of the spheres within the container to the volumes of
container, evolves into an asymptotic value (Fig. 5a)
According to theory [4], there exists the relationship
between ρ1, and N , the number of spheres as

ρ1(N ) = ρ1∞ + AN− 1
3 (1)

where ρ1∞ is the extrapolation value of ρ1(N ) as N →
∞ (infinite number of spheres). The relation between
ρ1∞ and overlapping ratio s is shown in Fig. 5b in semi-
log plot. When s is greater than 10−3, ρ1∞ decreases
steeply with the decrease of s. This is obviously due to
the reduce of overlapping between spheres. When s is

Figure 4 Cross sectional schematic illustration of definition of (a) pack-
ing density ρ1, (b) packing density ρ2, and (c) packing density ρz where
each polygon presents a Voronoi cell within which lays a sphere (but not
necessarily sectioned by the plane). The centers of the shaded spheres
are above the cross section plane while the others under the cross section
plane. (Continued )

Figure 4 (Continued ).

less than 1 ∗ 10−4, ρ1∞ reaches value much lower than
0.63. At this stage shrinkage of radii results that many
spheres are not in contact with its neighbors. Above
explanation is consistent with observed evolution of
the position of subpeaks in RDF. Present work shows
clearly the limitation of relocation method to simulate
RCPHS structure. It is difficult to get s less than 10−4

without loosing the structure.
Evolution of ρ1∞ with s from 1 ∗ 10−4 to 9 ∗ 10−4 is

shown in Fig. 5c in linear plot. When s = 3 ∗ 10−4, 4 ∗
10−4 or 5 ∗ 10−4, we have ρ1∞ values between 0.63
and 0.64. ρ1∞ begins to drop abruptly with s less
than 4 ∗ 10−4. This feature, besides the consideration
of RDF, lead us to prefer s equal to 4 ∗ 10−4 or 5 ∗ 10−4

as the suitable standard to be adopted in our algorithm.
All the data below are obtained at s equal to 5.0∗10−4.

By standard curve fitting technique, we have an av-
erage value of ρ1∞ = 0.6352 with a standard deviation
of 0.0016 and an average value of A = −1.120 with a
standard deviation of 0.016. It should be noted that one
kind of boundary effect on packing density, i.e., possi-
ble ordering of spheres on container’s wall, is avoided
in calculation of ρ1∞ by using virtual container. The
other kind of boundary effect that additional void exits
on boundary still retains. So, ρ1(N ) and ρ1∞ are bulk
packing densities of RCPHS.

3.3. Interior packing density
Logically, a question arises: what is the packing den-
sity of RCPHS without boundary effects? Since bound-
ary effects is totally eliminated, such a packing den-
sity should represent the space occupation efficiency
of spheres in interior of the random close packing as-
sembly of hard spheres and could be termed “interior
packing density” of RCPHS. We try to deduce this in-
terior packing density by assign the virtual hard con-
tainer the ability to cut spheres on its wall (Fig. 4b),
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Figure 5 (a) Packing density ρ1 as a function of N , number of spheres
within virtual containers, s = 5.0 ∗ 10−4, (b) Evolution of ρ1∞ with
overlapping ratio in semi-log plot; (c) Evolution of ρ1∞ with overlapping
ratio in linear plot.

so that portion of these spheres within the container
contributes to the sum of sphere’s volume within the
container. We define packing density ρ2(N ) as the ratio
of this volume to the volume of container. The key fea-
ture of the definition of ρ2(N ) is that spheres with their
center locate within a spherical shell of thickness 2r
contribute part of their volume to the sum of sphere’s
volume within the container but only those within the
inwards spherical shell of thickness r contribute to the
N -counting (Fig. 6). Relationship between ρ2 and N ,
number of spheres with their centers within containers
is showed in Fig. 7. It is evident that ρ2 reaches a stable
value very quickly, in sharp contrast to ρ1 which has a

Figure 6 Schematic illustration of definition of ρ2(N ). The radius of
spheric container is R, and radius of packing sphere is r . If a sphere’s
center locates within the inward spheric shell of thickness r , it contributes
to N -counting and sum of sphere volume. If a sphere’s center locates
within the outwards spheric shell of thickness r , it does not contribute
to N -counting but to sum of sphere volume.

Figure 7 Packing density ρ2 as a function of N , number of spheres with
their centers within virtual container.

clear asymptotic characteristics. We try to fit ρ2(N ) via
N curve with a formula

ρ2(N ) = ρ2∞ + B N− 1
3 (2)

where ρ2∞ is the extrapolation value of ρ2(N ) as
N → ∞ (infinite number of spheres). By standard curve
fitting technique, five sets of RCPHS of equal spheres
in this work give an average ρ2∞ value of 0.6670 with
a standard deviation of 0.0031 and an average B value
of 0.033 with a standard deviation of 0.035.

By our definition, average volume contribution of
each N -counting of partial sphere is

v̄ =
∫ R+r

R−r v(x)4πx2k dx
∫ R

R−r 4πx2k dx
(3)

where k is the average number of sphere centers in
unit volume, x is the distance between centers of con-
tainer and sphere, v(x) is the volume of partial spheres
within the container and R is the radius of container.
Calculation shows that v̄ equals 4

3πr3 (volume of a
full sphere) and is independent of R. In other words,
each N -counting, no matter whether the corresponding
sphere center is in the inwards spherical shell or not, in-
troduce statistically volume of a full sphere to the sum of
sphere volume. This is the reason that ρ2(N ) stabilizes
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rapidly after first fluctuation with small N . Hypothesis
test (more precisely, t-test) shows that the difference
of average B value from zero is not significant at sig-
nificant level of 0.05. All these analysis indicate that
ρ2∞ is a density without boundary effects and can be
considered as interior packing density of RCPHS.

3.4. Packing densities deduced
from Voronoi diagram

Given a set of distinct points in three dimensional space,
their Voronoi diagram divides the space according to the
nearest-neighbor rule: Each point is associated with the
region of space closest to it [18]. These regions are con-
vex polyhedrons and are called Voronoi cells. This set
of Voronoi cells is space-filling and non-overlapping.
If the point set to generate Voronoi diagram is con-
sisted of the centers of hard spheres in a random close
packing, we get a Voronoi diagram based on RCPHS
(VD-RCPHS), which is a useful tool to analysis con-
nectivity of spheres in RCPHS [11, 12]. In VD-RCPHS,
each sphere is enclosed in its Voronoi cell.

Since a Voronoi cell contains all points nearer to its
sphere center than to others, its volume is a measure of
the corresponding sphere’s ability to occupy space in
RCPHS structure. The ratio of volume of ith sphere to
volume of its Voronoi cell, ρv(i), presents the spatial
occupancy efficiency of the ith sphere. So the packing
density of RCPHS can be traced to individual sphere,
or equivalently, to individual Voronoi cell. We consider
ρv(i) as the local packing density of RCPHS for ith
sphere within ith Voronoi cell. Histogram of ρv is shown
in Fig. 8. ρv ranges from about 0.5261 to about 0.7723
and peaks at about .06731.

It is well known that ordered close packing of equal
spheres leads to a bulk packing density of 0.7405, the
upper limit of density that cannot be exceeded. In such a
ordered structure, local density is the same as bulk den-
sity. However, local density may be higher than 0.7405
in structures without translational symmetry, although
their bulk densities will inevitably lower than that of
ordered close packing. Indeed, the densest packing of
twelve spheres around one is a regular icosahedron
(with the twelve spheres at the vertices), a configura-
tion cannot be incorporated into translational symmet-
ric structure [11]. We checked spheres with local den-

Figure 8 Histogram of local density for spheres in RCPHS structure.

sities higher than 0.74 and found that they all overlap
with their neighbors. Difference between diameter of a
sphere and distance to its neighbor, a measure of lin-
ear overlapping, is in the order of 2 ∗ 10−2. This again
shows clearly the shortcoming of our algorithm and,
perhaps, that of similar relocation algorithms adopted
in literature [14]. Local density ρv is a sensitive quantity
to detect and evaluate the influence of minute overlap-
ping. We also calculate the quantity

ρz = sum of volume of spheres

sum of volume of Voronoi cells
(4)

From five sets of RCPHS, we have an average value of
ρz = 0.6690 with a standard deviation of 0.0006. It is
evident that ρ2∞ and ρz is almost the same. Since each
set of RCPHS is subjected to both ρ2∞ and ρz calcu-
lation, our analysis procedure is a typical randomized
complete block experimental design [19]. Correspond-
ing F-test [19] proves that difference between ρ2∞ and
ρz is not significant at the significant level of 0.05.

The meaning ofρz is illustrated in Fig. 4c. Spheres are
packed in a virtual container with rough wall that is built
of faces of Voronoi polyhedrons. Since Voronoi cell is
an exact description of spatial occupancy by spheres, ρz
is a packing density without the effect of additional void
near container walls, while such void exists near regular
(plane or spherical) walls in traditionally defined bulk
density. This is the reason that ρz and ρ2∞ have same
value. In other words, There does exist a quantity as
interior packing density of RCPHS which is a property
of RCPHS without boundary effects and can be defined
by either ρ2∞ or ρz.

Further more, because of the difficulty to inter-
pret bulk density of RCPHS without ambiguity due
to boundary effects, interior packing density may be
a more appropriate indicator of the nature of random
packing of hard spheres. It is noted that standard devi-
ation of ρz is considerably less than that of ρ1∞. This
suggests that ρz may be calculated more accurately and
may be more sensitive to the random packing character-
istics. We leave the study of random packing of spheres
of equal size or unequal size with different packing
densities to future work.

4. Conclusion
In conclusion, we have presented a study on packing
density of random close packing of equal hard spheres.
The RCPHS is generated by a rearrangement algorithm
with an optimization subroutine. Various packing den-
sities are calculated on packing with overlapping ratio
of 5∗10−4. Traditionally defined packing density, bulk
density, is found to be 0.635 ± 0.002 in this study.
We propose the concept of interior packing density of
RCPHS, which is the packing density without bound-
ary effect. Interior packing density is calculated by two
methods, resulting in values without statistically signif-
icant difference. Interior packing density deduced from
Voronoi diagram is 0.6690 ± 0.0006. Using Voronoi
diagram based on RCPHS, local packing density can
be assigned to individual sphere and it ranges from
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0.5261 to 0.7723, which is sensitive to sphere’s local
configuration and overlapping.
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